1. Show that the inverse limit of the diagram:

G

## H

is the direct product  $G \times H$ .

2. In the category of groups, consider the diagram:

$$G \xrightarrow{f} H$$

where g is the trivial group homomorphism. Does the direct limit of this diagram necessarily exist? If so, describe the direct limit.

3. A **topological group** is a topological space and group G such that the group operations

$$G \times G \longrightarrow G$$
 and  $G \longrightarrow G$   
 $(x, y) \longmapsto xy$   $x \longmapsto x^{-1}$ 

are continuous. For such a space, prove that  $\pi_1(G, 1)$  is abelian.

- 4. Compute  $\pi_1(\mathbb{RP}^k)$ .
- 5. (Hatcher, number 1.2.11) The **mapping torus**  $T_f$  of a map  $f : X \to X$  is the quotient of  $X \times I$  obtained by identifying (x, 0) with (f(x), 1). In the case  $X = S^1 \vee S^1$  with base-point preserving f, compute a presentation for  $\pi_1(T_f)$  in terms of the induced map  $f_* : \pi_1(X) \to \pi_1(X)$ . Do the same when  $X = S^1 \times S^1$ .
- 6. (Hatcher, number 1.2.8) Compute the fundamental group of the space obtained from two tori  $S^1 \times S^1$  by identifying a circle  $S^1 \times x_0$  in one torus with the corresponding circle  $S^1 \times x_0$  in the other torus.
- 7. (Hatcher, number 1.1.5) Show that for a space X, the following three conditions are equivalent:
  - (a) Every map  $S^1 \to X$  is homotopic to a constant map, with image a point.
  - (b) Every map  $S^1 \to X$  extends to a map  $\mathbb{D}^2 \to X$ .
  - (c)  $\pi_1(X, x_0) = 1$  for all  $x_0 \in X$ .

Deduce that a space X is simply-connected iff all maps  $S^1 \to X$  are homotopic (in this problem, 'homotopic' means 'homotopic without regard to basepoints').

8. Use the Wirtinger presentation of the fundamental group of a knot complement (see Hatcher, number 1.2.22) to show that the unknot, the trefoil, and the figure-eight know are all pairwise non-isotopic. These knots are shown in order on the diagram on the next page.



Figure 1: the unknot, the (right-handed) trefoil, and the figure-eight knot